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Abstract 

 

Economic theory assumes that preferences are rational. However, experiments have found small 

violations of transitivity. This paper develops a model of rationality with preference discovery 

costs. Introspection is costly. Thus, agents may find it optimal to use less than full effort, even 

though this raises the risk of making a poor choice. This model could potentially explain the 

intransitivities observed in the data while retaining rationality and optimization.  
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1 Introduction 

  

 “Preferences are complete and transitive.” This assumption is one of the cornerstones of 

microeconomic theory. However, experiments routinely find that human behavior does not 

conform to this axiom perfectly (Battalio (1973), Andreoni and Miller (2002), Harbaugh et al. 

(2001)). These results have been known for a while, but standard theory continues to rely on 

rationality. Perhaps this is because rationality seems so reasonable. How can Bundle A be both 

better and worse than Bundle B? It is similarly difficult to believe that someone can deliberately 

prefer X over Y and Y over Z, and yet find Z better than X. Alternatively, preferences could be 

rational but people might not pick the option that is most preferred. However, this also appears 

nonsensical. Why would anyone intentionally choose an inferior combination of goods, knowing 

that superior alternatives are available? 

 Here is one response that economists frequently give: “Yes, there certainly are rationality 

violations in laboratory experiments with small stakes. However, if there was repetition or if the 

stakes were higher, people would learn from their mistakes and the anomalies would go away.” 

A number of studies have tested this claim. However, the evidence is not as clear cut as many 

economists commonly believe. A heavily studied example is the preference reversal 

phenomenon. It is usually discussed in the context of risk theory, but it can also be interpreted as 

a violation of completeness and transitivity. A subject chooses between a “P-bet” (safe) and a “$-

bet” (risky). Then the experimenter elicits the subject’s valuation of the bets. In many cases, the 

subject places a higher value on the risky bet, but chooses the safe bet. This reveals the following 

preferences: P-bet > $-bet > P-bet. Cox and Grether (1996) and Loomes et al. (2003) both found 

that preference reversals occurred less frequently as the experiment was repeated. However, 

repetition does not solve everything. Braga et al. (2009) reported their results in the title of their 

paper: “Market Experience Eliminates Some Anomalies – And Creates New Ones.” As subjects 

gained experience, a different kind of preference reversal occurred. Now people would often 

choose the risky bet, but they placed a higher value on the safe bet. Completeness and transitivity 

are still violated. Plott (1996) discussed the effect of repetition on rational behavior, surveying 

the literature on a wide variety of experiments. He found that violations tended to decrease with 

repetition. Nevertheless, some violations still remained at the end of the experiments. 

 Camerer et al. (1999) surveyed 74 papers on the effect of raising the stakes. One of their 
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results (emphasis in the original): “We also note that no replicated study has made rationality 

violations disappear purely by raising incentives.” However, they did note many cases where 

higher stakes lead to lower variance. Some of the outliers vanish once subjects have a larger 

financial motivation, but this is not the same as eliminating all the anomalies. Smith and Walker 

(1993) reviewed 31 studies and found that higher stakes were associated with fewer rationality 

violations.  

 Another response to anomalies is to downplay their significance. Many indices have been 

developed to measure the severity of a violation (Varian (1991), Afriat (1972)). Intransitive 

choices waste money; the indices measure the fraction of the wealth that is wasted. According to 

these metrics, the magnitude of the violations found in experiments is quite small (Battalio 

(1973), Varian (1991), Harbaugh et al. (2001)). For instance, Varian (1991) demonstrates that in 

Battalio’s (1973) dataset, people seldom waste more than 5% of their endowment. Andreoni and 

Miller (2002) and Harbaugh et al. (2001) reach the same conclusion in their experiments. 

 I draw three main conclusions from the literature on rational choice: 

 

1. Rationality violations do exist and have been replicated under many conditions.  

2. Giving the subjects higher stakes or the opportunity to learn from experience might reduce the 

number of violations, but it will not eliminate them entirely.  

3. The violations are small in magnitude. 

 

 Because departures from rationality are so small, perhaps we only need a slight 

modification of the theory. I propose adding preference discovery costs to the standard model of 

rational choice. In this new model, people do have rational preferences. However, accessing 

those preferences is costly. It takes effort to figure out what you want, and you dislike this work. 

However, if you put in more effort, you will likely receive a bundle that is better, i.e., one that 

gives higher utility according to your true (but imperfectly known) preferences. Effort is chosen 

optimally. Agents weigh the disutility of effort against its expected benefits. The cost of effort is 

known, but the expected benefits may be uncertain. Subjective beliefs are formed about the 

rewards of increased effort. These beliefs are updated optimally after consumption. 

 Since picking the most preferred bundle requires costly introspection, using less than full 

effort could be optimal. Such behavior could lead to apparently intransitive choices, but perhaps 
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the individual is actually rational once preference discovery costs are accounted for. This could 

explain the small deviations from standard theory that we observe in the data while still retaining 

rational preferences and optimization. Since these assumptions are crucial to economics, it is 

important to show that they are compatible with the data. 

 Other efforts have been made to incorporate the costs of decision making. Their existence 

is widely acknowledged in many disciplines (Hogarth and Karelaia (2005), Bröder and Schiffer 

(2003)). Due to these decision-making costs, many papers outside of economics argue that 

people do not optimize; instead, they rely on heuristics. However, in my model, the choice 

between optimization and heuristics is a false one. People use heuristics because they are optimal 

when preference discovery costs are present. One feature of my model is that it does not require 

that we impose any functional form on the heuristic. 

However, economists have made only a few attempts to model decision-making costs. 

Conlisk (1988) uses “optimization costs” that are a function of the time required to make a 

decision. Since it is one of the first papers in the genre, there is no general theory or experiment 

to test it; only a few applications are included and discussed. In all disciplines, a common 

objection to these models of decision-making cost is the “infinite recursion problem,” which 

Conlisk (1988) mentions frequently. If there is a cost to making a decision, why is there not also 

a cost to deciding how much effort to use in making the decision on effort? Similarly, there could 

be a cost to deciding how much effort to use in deciding how to decide on the original question, 

ad infinitum. Most of these models have no response other to assume it away. One feature of my 

model is that it can accommodate any finite number of recursions. 

 Smith and Walker (1993) introduce a model of decision-making cost and find indirect 

evidence for it. They review 31 experiments in which different groups of subjects faced different 

levels of cash payoffs. As the potential payouts rose, the number of deviations from rationality 

consistently fell (Smith and Walker (1993)). This is exactly what we would expect if effort is 

costly. Raising the stakes increased the benefits of making good decisions, so subjects were 

willing to invest more effort. Plott (1996) takes a very similar approach, but unlike Smith and 

Walker (1993), he does not include a theoretical model to explain the violations. In Smith and 

Walker’s (1993) model, preferences remain rational, but effort is not chosen optimally. Rather, 

the unobserved decision cost is a friction that allows choice to deviate from rational preferences. 

They write, “ε is not ‘error’ from the point of view of the subject weighing (albeit unconsciously) 
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benefit against decision cost. It is the experimentalist who interprets ε as a prediction error of the 

theory” (Smith and Walker (1993)). However, economists are certainly inclined to retain 

optimization if possible. 

 The assumption that agents optimize is also relaxed in Evans and Ramey (1998). The 

model is about firms setting their expectations when calculation costs are present, but the same 

ideas can be applied to consumers making choices when there are decision costs. As calculation 

rises, firms make better estimates. Rational expectations is a limiting case when calculation 

approaches infinity. Firms use a heuristic; when the gain from a previous level of calculation 

exceeds a target level, the firm continues to calculate, but when it falls below the target, further 

calculation stops. One of their earlier papers kept optimization (Evans and Ramey (1992)). A 

difficult issue in this model and in other models of decision cost is how to determine 

effort/calculation optimally. It is easy to speak of agents weighing the benefits of higher quality 

decisions against the cost of effort, but the mathematics reveal a stubborn problem. How can 

agents be aware of the utility gain from more effort and yet be ignorant of their utility function? 

However, if the utility function is known, then the solution to the consumer’s problem is already 

given by standard theory. Choosing anything else cannot be optimal. Hence, any such theory 

cannot explain the intransitivities we observe in the real world. Evans and Ramey (1992) had to 

assume the problem away. Firms costlessly knew the benefits of reoptimizing without knowing 

what reoptimization would require them to do. This makes the math work and also yields some 

implications for policy that the authors discuss. In several classical models with rational 

expectations, policy is neutral; firms anticipate and offset the government’s actions. However, if 

calculation is costly, then policy may have limited effectiveness (Evans and Ramey (1992)). If 

the policy changes are small, then the gain from reoptimizing will not be enough to recover the 

calculation cost. Firms prefer sticking to their previous plan rather than offsetting the policy 

change (Evans and Ramey (1992)). Perhaps similar results can come from a theory of consumers 

with decision costs. Firms and the government may extract some benefits from consumer 

irrationality, but if they keep trying to increase those benefits, consumers may increase their 

decision-making effort and the intransitivities will vanish. 

 There is a related literature in risk theory on intransitive choices over lotteries. These 

non-expected utility models take a different approach to explaining anomalies. To see the 

difference, break up revealed preference axioms into two components: 
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1. People have complete, transitive, and monotonic preferences 

2. In every budget set, people pick the bundle that they prefer the most. I.e., choices reveal 

preferences 

 

Standard theory starts out by distinguishing between preferences and choice, but then the second 

assumption unifies the two. Most of the behavioral theories keep the second assumption but relax 

the first one. A key element is probability weighting, introduced by Tversky and Kahneman 

(1979). The agent does not use the actual probabilities in the lottery; instead, the probabilities are 

transformed using some function. Viscusi (1989) demonstrated that a Bayesian approach to 

probability weighting can resolve many of the challenges to the Expected Utility Theorem. 

However, intransitivity is not addressed. Bordley (1992) generalizes the model to accommodate 

intransitivity and several other paradoxes. Both models can explain violations of monotonicity, 

but that is a weakness rather than a strength. Consider the two lotteries in Table 1. 

 

Table 1 Two lotteries 

Lottery 1 

Outcome Probability 

$10 30% 

$0 70% 

 

Lottery 2 

$10 20% 

$10 10% 

$0 70% 

 

Clearly, the two lotteries are the same. However, if agents weight the probabilities, then they will 

almost surely fail to realize this. To see this, let 𝑢(𝑥) be the agent’s von Neumann-Morgenstern 

utility function; 𝑤𝑓(𝑞) is the probability weighting function. Then the expected weighted utility 

from the first lottery is 𝑤𝑓(0.3) 𝑢(10) + 𝑤𝑓(0.7) 𝑢(0). For the second lottery, it is (𝑤𝑓(0.2) +
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𝑤𝑓(0.1))  𝑢(10) + 𝑤𝑓(0.7) 𝑢(0). These will always be equal if 𝑤𝑓(0.2) + 𝑤𝑓(0.1) = 𝑤𝑓(0.3). 

But this is not true in either model, except in the special case where they reduce to the Expected 

Utility Theorem. The same problem arises in other probability weighting models. The reason 

they allow possibilities such as 𝑤𝑓(0.2) + 𝑤𝑓(0.1) ≠ 𝑤𝑓(0.3) is that they want to explain why 

people overweight low probabilities and other paradoxes. The drawback is that in the model, 

people will make obvious and unrealistic violations of monotonicity. Suppose that Lottery 2 is 

strictly preferred to Lottery 1 and preferences are continuous. Then there exists 𝜀 > 0 such that 

Lottery 1’s payoff of $10 can be changed to $(10 + 𝜀) and the agent will still prefer Lottery 2.  

 People do commit violations of montonicity and transitivity – but not when it’s that 

obvious. Models that rely on the second assumption (choices reveal preference) cannot explain 

this. If choices reveal preference and preferences are intransitive, then violations will occur even 

in the most obvious cases. Tversky and Kahneman (1986) demonstrated the effect of 

transparency on violations. Table 2 shows some of the lotteries they used. 

 

Table 2 Lotteries in Tversky and Kahneman (1986) 

 

 

Lottery A  Lottery C 

Outcome Probability Outcome Probability 

$0 90% $0 90% 

$45 6% $45 6% 

$30 1% $30 1% 

-$15 1% -$15 3% 

-$15 2%  

 

Lottery B Lottery D 

$0 90% $0 90% 

$45 6% $45 7% 

$45 1% -$10 1% 

-$10 1% -$15 2% 

-$15 2%  
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In one part of the experiment, subjects chose between A and B. Without exception, they picked 

B. In that case, it is easy to compare the outcomes and probabilities across lotteries, so no one 

committed any violations. Later, they had to pick between C and D. Here it is not quite so clear if 

one lottery dominates the other. The majority chose C, but a more careful look reveals that D 

dominates C. Thus, violations do occur, but only when people fail to exert full effort. 

 This suggests that the problem with standard theory is not that preferences are irrational. 

People avoid violations as long as they are obvious or if enough effort is applied. The problem is 

that people do not always choose according to their underlying rational preferences. This is due 

to preference discovery costs. Thus, the model in this paper is more realistic than ones with 

intransitive preferences. 

 There is another attempt to retain rationality: change of tastes models. It is easy to see 

how this might explain intransitivities. For example, after consuming Brand B, you find it better 

than expected, leading you to consume more of it and make choices inconsistent with your 

previous decisions. Conlisk (1996) observes that these models are very similar to ones with 

imperfect information about stable preferences, such as DeGroot (1983). “I changed my behavior 

because my unstable preferences changed” is difficult to distinguish from “I changed my 

behavior because I learned more about my underlying stable preferences.”  

However, this does not fully address the violations that occur in the laboratory. In a 

common procedure, used in Harbaugh et al. (2001) and others, subjects do not consume their 

payoff until the end of the experiment. None of the mechanisms that are used to explain why 

tastes shift – social preferences, culture, emotions (Jacobs (2016)) – have greatly changed within 

the experiment. In addition, the participant has not gained more information about their 

preferences for the good, since they have not consumed it yet. In short, within such an 

experiment, preferences should be stable and choices should be consistent. However, 

intransitivities remain. This suggests that changing tastes are not the source of all intransitivities. 

Ballinger and Wilcox (1997) discuss a similar issue in their paper on risk: “[M]any subjects’ 

choices are still inconsistent across identical trials of choice problems...This suggests that, for 

whatever reason, discrete choice is inherently probabilistic.” The reason is preference discovery 

cost. When subjects do not use maximum effort, they make random errors in their choices. This 

is why my model can explain such behavior while change of tastes models cannot. 

 Standard theory is incompatible with the intransitive choices observed in the data. 
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However, many of the models that try to resolve these anomalies have issues of their own. If 

probability weights are used, then highly implausible violations of monotonicity can occur. 

Change of tastes models do not explain all of the intransitivities in the laboratory. Preference 

discovery cost models avoid these flaws. However, they have challenges of their own: the 

recursion problem and the difficulty of selecting optimal effort with an unknown utility function. 

The model in this paper solves both of those problems. Since rationality and optimization are 

retained, it is a minimal modification of standard theory, and yet it still reconciles rational 

preferences with the data.  

 

2 Theory 

 

 The utility function takes the form 

 

(1) 𝑈(𝑥, 𝑑) = 𝑢(𝑥) − 𝑣(𝑑). 

 

Clearly the individual’s preferences are rational; otherwise no utility function would exist. Here 

𝑢(𝑥) is the utility from consuming the vector of goods 𝑥. The vector of prices associated with 

these goods is 𝑝; the consumer has wealth 𝑤 to spend. Assume that 𝑢(𝑥) is continuous and 

locally nonsatiated. The effort level is 𝑑 and the preference discovery cost is 𝑣(𝑑). Negative 

effort is impossible, so 𝑑 ≥ 0. There can be no disutility from effort when no effort is exerted, 

which suggests the normalization 

 

(2) 𝑣(0) = 0. 

 

All else equal, people prefer less effort to more, so the preference discovery cost 𝑣(𝑑) is 

monotonically increasing in 𝑑. 

 Standard theory provides a useful benchmark. Let 𝑥∗(𝑝, 𝑤) be the unboundedly rational 

choice of 𝑥, i.e., the solution to 

 

(3) max𝑢(𝑥) subject to 𝑝 ∙ 𝑥 ≤ 𝑤. 
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This is simply the Walrasian demand correspondence. As discussed in the introduction, if agents 

optimize and know their utility function, then we are back to standard theory and cannot explain 

intransitivities. Therefore, the utility function 𝑢(𝑥) is unknown. However, 𝑣(𝑑) is part of the 

agent’s information set. The agent’s task is to maximize 𝐸[𝑈(𝑥, 𝑑)]. 

 Because people rarely use full effort in making their choices, there is an apparent 

imprecision to our preferences. One speaks of cups of coffee rather than molecules of coffee. It is 

almost surely true that one cup and another cup will not contain the exact same number of 

molecules. However, the difference is small and the effort required to find the perfect number of 

molecules is great; the imprecision is quite tolerable. Thus, the quantity actually chosen will 

probably be a random number of molecules close to the optimal amount. Standard theory implies 

that there is a unique solution if the budget constraint is linear and preferences are strictly 

convex. Deviating by even a molecule would be a violation. 

 Thus, it is more realistic to treat consumption as a random variable. It will be a function 

of effort, so actual consumption will be 𝑥(𝑝, 𝑤, 𝑑). Mathematically, we model the agent as 

choosing effort optimally rather than consumption. After selecting effort, the agent receives a 

random quantity of consumption. It may be useful to think of consumption as being chosen via a 

heuristic. 𝑑 can be thought of as the effort required to implement the heuristic. When choosing 

between heuristics, the agent considers how much effort each one would require and how good 

each one is likely to be at making the best choice. However, the agent does not yet know the 

resulting consumption choice. That is only resolved after the heuristic is chosen. Thus, when 

deciding on effort 𝑑, consumption is a random variable from the consumer’s viewpoint. A 

strength of this model is that no functional form is imposed upon the heuristic. This makes the 

model more general and allows it to be applied in a wide variety of situations. 

How does the agent find the optimal level of effort? The preference discovery cost 𝑣(𝑑) 

is known but the utility function is not. This brings us back to the problem mentioned earlier: 

how can agents be aware of the utility gain from more effort and yet be ignorant of their utility 

function? Here is the solution. Agents have beliefs about the distribution of 𝑢(𝑥∗(𝑝, 𝑤)) −

𝑢(𝑥(𝑝, 𝑤, 𝑑)). To simplify notation, call this variable y.  

 

(4) 𝑦(𝑝,𝑤, 𝑑) = 𝑢(𝑥∗(𝑝, 𝑤)) − 𝑢(𝑥(𝑝, 𝑤, 𝑑)) 

𝑦(𝑝,𝑤, 𝑑) is the difference between a perfectly rational agent’s utility and the utility from 
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consumption of our boundedly rational individual. Call this the “utility gap.” Since the 

boundedly rational agent can never outperform a perfectly rational agent, clearly 𝑦(𝑝,𝑤, 𝑑) ≥ 0. 

The true pdf of y is not known – that is why agents form beliefs about it (Section 3 

describes how these beliefs are formed). It is believed to have pdf 𝑓(𝑦|𝑝, 𝑤, 𝑑)1
. The agent 

would like to solve the problem 

 

(5) max𝐸[𝑢(𝑥(𝑝, 𝑤, 𝑑))] − 𝑣(𝑑). 
 {𝑑} 

 

Unfortunately, 𝑢(𝑥) and the density of 𝑥 are unknown. Note that the agent could solve a similar 

problem: 

 

(6) max  −𝐸[𝑦|𝑝, 𝑤, 𝑑] − 𝑣(𝑑) 
   {𝑑} 

 

This is because the agent knows 𝑣(𝑑) and has beliefs about the distribution of 𝑦(𝑝, 𝑤, 𝑑). The 

next two propositions show how the agent overcomes the challenges of finding the optimal level 

of effort. 

 

PROPOSITION.  The level of effort d that solves (6) also solves (5). 

 

PROOF. By definition of 𝑦(𝑝, 𝑤, 𝑑), we know that (6) can be rewritten as follows. 

 

(7) max𝐸[𝑢(𝑥(𝑝, 𝑤, 𝑑)) − 𝑢(𝑥∗(𝑝, 𝑤))] − 𝑣(𝑑). 
   {𝑑} 

 
 

Recall that 𝑥∗(𝑝, 𝑤) is the quantity that a perfectly rational agent would choose. Standard theory 

does not consider the cost of effort, so 𝑥∗(𝑝, 𝑤) and 𝑢(𝑥∗(𝑝, 𝑤)) are independent of 𝑑. Thus, the 

level of effort that solves (7) also solves (5). Since (7) is equivalent to (6), the proposition is 

proven.                                                                                                                                             □ 

 

_____________________________________________________________________________________________________________________ 

1 – Note that even if this belief about the distribution was correct and the agent was aware of this, it would still be impossible to recover the 

utility function. Knowledge of 𝑢(𝑥∗(𝑝, 𝑤)) − 𝑢(𝑥(𝑝, 𝑤, 𝑑)) does not imply knowledge of 𝑢(𝑥). 
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As a result of the proposition, we can rewrite the agent’s problem in a form that can be solved. 

The next proposition shows the solution. 

 

PROPOSITION. If all the functions are differentiable, then the first order condition for level of 

effort d that solves the agent’s problem is as follows. 

 

(8) 𝑑 (
∂

∂𝑑
(−∫ 𝑦 𝑓(𝑦|𝑝, 𝑤, 𝑑) d𝑦

∞

0
) − 𝑣′(𝑑)) = 0. 

 

PROOF. Assuming that there is an interior solution, the first order condition is 

 

(9) 
∂

∂𝑑
(−∫ 𝑦 𝑓(𝑦|𝑝, 𝑤, 𝑑) d𝑦

∞

0
) − 𝑣′(𝑑) = 0 

 

However, it is possible that the solution is not on the interior; exerting zero effort may be 

optimal. Thus, either 𝑑 = 0 or 𝑑 is given by (9). Both of these possibilities are expressed in (8), 

proving the proposition.                                                                                                                   □ 

 

This is the basic model. Here is an illustration before we deal with issues such as the infinite 

recursion problem. 

 

Example 

 

For simplicity, suppose there are two goods, x and z, that are perfect substitutes. The 

individual’s utility function is 𝑢(𝑥, 𝑧) = 𝑥 + 𝑧 and 𝑣(𝑑) =
7

2
log (𝑑 + 1). There are two budget 

lines, 𝐵0 and 𝐵1. On budget 𝐵0, prices are 𝑝𝑥
0 = 4, 𝑝𝑧

0 = 5, and he has wealth 𝑤0 = 160. He 

correctly believes that  

(10) 𝑦0(𝑝
0, 𝑤0, 𝑑0) =

𝑢(𝑥0
∗, 𝑧0

∗) − 𝑢[𝑥(𝑑0), 𝑧(𝑑0)] ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,
max {𝑤0/𝑝𝑥

0,   𝑤0/𝑝𝑧
0}−min {𝑤0/𝑝𝑥

0,   𝑤0/𝑝𝑧
0}

1+𝑑
). 

Since the goods are perfect substitutes, a fully rational person would just buy whichever one is 

cheaper. In other words, 𝑥0
∗ = 40, 𝑧0

∗ = 0. Thus, 𝑢(𝑥0
∗, 𝑧0

∗) = 40. More generally, 𝑢(𝑥0
∗, 𝑧0

∗) =
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max {𝑤0/𝑝𝑥
0,   𝑤0/𝑝𝑧

0}. Note that the worst choice on the frontier of the budget line is picking the 

opposite corner solution: 𝑥0
∗ = 0, 𝑧0

∗ = 30. This would lead to 𝑢(𝑥, 𝑧) = 30. More generally, 

picking the wrong corner gives utility 𝑢(𝑥, 𝑧) = min {𝑤0/𝑝𝑥
0,   𝑤0/𝑝𝑧

0}. The point: as 𝑑 

approaches infinity, the agent is perfectly rational; when 𝑑 = 0, the agent picks from the budget 

line completely at random.  

Note that the optimal level of effort is 𝑑0
∗ = 1/7. This implies that the agent could select 

any bundle on the budget line between (5, 28) and (40, 0). This wide range of outcomes should 

not be surprising; when the slope of the budget line is very close to the slope of the indifference 

curve, the payoff to additional effort is low. Thus, effort will be low and the dispersion of 

choices will be high. 

Now consider another budget line, 𝐵1. Here 𝑝𝑥
1 = 4, 𝑝𝑧

1 = 3, and 𝑤1 = 120. Now  

(11) 𝑦1(𝑝
1, 𝑤1, 𝑑1) =

𝑢(𝑥1
∗, 𝑧1

∗) − 𝑢[𝑥(𝑑1), 𝑧(𝑑1)] ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,
max {𝑤1/𝑝𝑥

1,   𝑤1/𝑝𝑧
1}−min {𝑤1/𝑝𝑥

1,   𝑤1/𝑝𝑧
1}

1+𝑑
). 

Then 𝑑1
∗ = 3/7 and we know that 𝑥1

∗ = 0, 𝑧1
∗ = 40. The choice could range from (0, 40) to (21, 

12). Figure 1 displays the range of possible choices. 
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Fig. 1 The agent will pick from the dotted region of the budget lines. 

 

 

 In standard theory, choosing a point from both 𝑁𝑂̅̅ ̅̅  on 𝐵0 and 𝑀𝑁̅̅ ̅̅ ̅ on 𝐵1 would reveal 

intransitive preferences
2
. However, our boundedly rational agent makes such choices 8.16% of 

the time. Thus, apparently irrational preferences can be reconciled with rationality if we account 

for preference discovery costs. 

 

3 Extensions 

 

 To pick effort optimally, agents need to have beliefs about the benefits of effort. This is 

then weighed against the costs in order to find the solution. In this section, we will see where 

these beliefs come from. In addition, the recursion problem will be solved. 

_____________________________________________________________________________________________________________________ 

2 – Exception: picking N on both budget lines. 
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The Recursion Problem 

  

In the model above, effort is costly since discovering one’s preferences is work. 

However, it is implicitly assumed that deciding on the optimal amount of effort is cost-free. A 

natural objection is that it also takes effort to decide on how much effort to use. Further effort is 

required to determine how much effort to apply to the problem of deciding how much effort to 

use in picking the effort level for the original consumption problem, etc. There could be any 

number of recursions in the decision problem. The model can be extended to accommodate 𝑁 

recursions, where 𝑁 is any positive integer.  

 Originally, the consumer chose 𝑑 and received a random draw of consumption 

𝑥(𝑝, 𝑤, 𝑑). Consumption was random because the consumer did not use enough effort to 

perfectly determine his preferences
3
. Now there are 𝑁 recursions. The agent uses effort 𝑑0 to 

decide on consumption. Effort 𝑑1 is applied to finding 𝑑0; this is how much effort you use to 

decide on the effort used on the consumption problem. Similarly, 𝑑2 is the effort used to decide 

on the effort level 𝑑1 that is used to decide on effort 𝑑0 that is used to decide on consumption, 

etc. The individual will initially pick 𝑑𝑁 optimally. Instead of getting a random draw of 

consumption, the agent will get a random draw of effort 𝑑𝑁−1 in the next level of the recursion 

problem. This will lead to another random draw of effort 𝑑𝑁−2 and so on. Eventually the agent 

reaches the last level of recursions and uses effort 𝑑0 in the consumption problem. 

Mathematically, the agent’s problem is  

 

(12) max𝐸[𝑢(𝑥(𝑝, 𝑤, 𝑑0)) − ∑ 𝑣𝑖(𝑑𝑖(𝑝, 𝑤, 𝑑𝑖+1))
𝑁−1
𝑖=0 ] − 𝑣𝑁(𝑑𝑁). 

                      {𝑑𝑁} 
 

In the previous model, the agent knew the functional form of 𝑣(𝑑) but not 𝑢(𝑥). Similarly, in 

this case 𝑣𝑘(𝑑𝑘) is known for 𝑘 = 0, 1, … ,𝑁, but 𝑢(𝑥) is unknown. Since the preference 

discovery cost is 𝑣𝑘(𝑑𝑘) instead of 𝑣(𝑑𝑘) at recursion 𝑘, the disutility of effort can differ across 

recursion levels.  

Now to specify the agent’s beliefs about the benefits of effort. Let 𝑑𝑘
∗  be the optimal  

 

_____________________________________________________________________________________________________________________ 

3 – Even if the consumer did use enough effort to perfectly determine his preferences, consumption could still be modeled as a random variable. 

It would simply have a degenerate distribution. 
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amount of effort at recursion level 𝑘. In the earlier model, the agent thought that 𝑦(𝑝,𝑤, 𝑑) =

𝑢(𝑥∗(𝑝, 𝑤)) − 𝑢(𝑥(𝑝, 𝑤, 𝑑)) had pdf 𝑓(𝑦|𝑝, 𝑤, 𝑑). Now extend the same idea to allow for 𝑁 

recursions: 

 

(13) 𝑦𝑀+1(𝑝, 𝑤, 𝒅) =

[𝑢(𝑥∗(𝑝, 𝑤)) − ∑ 𝑣𝑖(𝑑𝑖
∗)𝑀

𝑖=0 ] − [𝑢(𝑥(𝑝, 𝑤, 𝑑0)) − ∑ 𝑣𝑖(𝑑𝑖(𝑝, 𝑤, 𝑑𝑖+1))
𝑀
𝑖=0 ]  

𝑓𝑜𝑟 𝑀 = 0, 1, 2, … , 𝑁 − 1. 

 

(14) 𝑦0(𝑝, 𝑤, 𝑑0) = 𝑢(𝑥
∗(𝑝, 𝑤)) − 𝑢(𝑥(𝑝, 𝑤, 𝑑0)) 

 

Here 𝒅 is a vector containing 𝑑0, 𝑑1, … , 𝑑𝑀+1. Note that 𝑦𝑀+1(𝑝, 𝑤, 𝒅) = 𝑦𝑀(𝑝, 𝑤, 𝒅) −

[𝑣𝑀(𝑑𝑀
∗ ) − 𝑣𝑀(𝑑𝑀(𝑝, 𝑤, 𝑑𝑀+1))]. The beliefs are that [𝑣𝑀(𝑑𝑀

∗ ) − 𝑣𝑀(𝑑𝑀(𝑝, 𝑤, 𝑑𝑀+1))] has pdf 

𝑔𝑀([𝑣𝑀(𝑑𝑀
∗ ) − 𝑣𝑀(𝑑𝑀(𝑝, 𝑤, 𝑑𝑀+1))]|𝑝, 𝑤, 𝒅). Given this and the belief that 𝑦0(𝑝, 𝑤, 𝑑0) has 

pdf 𝑓0(𝑦0|𝑝, 𝑤, 𝒅), the agent can derive the distribution 𝑓𝑀+1(𝑦𝑀+1|𝑝, 𝑤, 𝒅). The agent’s 

problem can be rewritten as 

 

(15) max𝐸 [−𝑦𝑁(𝑝, 𝑤, 𝒅) + [𝑢(𝑥
∗(𝑝, 𝑤)) − ∑ 𝑣𝑖(𝑑𝑖

∗)𝑁−1
𝑖=0 ]] − 𝑣𝑁(𝑑𝑁). 

                                     {𝑑𝑁} 
 

 

Note that 𝑑𝑖
∗ is independent of 𝑑𝑁 for all 𝑖 < 𝑁, just as 𝑢(𝑥∗(𝑝, 𝑤)) was independent of 𝑑 in the 

original model with no recursions. Thus, the first order condition is 

 

(16) 
𝜕

𝜕𝑑𝑁
(−∫ 𝑦𝑁(𝑝, 𝑤, 𝒅)

∞

0
𝑓(𝑦𝑁|𝑝, 𝑤, 𝒅) d𝑑𝑁) − 𝑣𝑁

′ (𝑑𝑁) ≤ 0. 

 

This shows that the recursion problem can be solved by the agent for any finite number of 

recursions; it is not an issue for this model. To simplify the math, in the rest of the paper I will 

assume that there are no recursions, though the results can be extended to any whole number of 

them. 
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Optimal Beliefs 

 

 Recall that 𝑦(𝑝,𝑤, 𝑑) = 𝑢(𝑥∗(𝑝, 𝑤)) − 𝑢(𝑥(𝑝, 𝑤, 𝑑)) ≥ 0 is the “utility gap.” It is the 

difference between a perfectly rational agent’s utility and the utility from consumption of our 

boundedly rational individual. To find the optimal level of effort, the agent used his beliefs about 

the pdf 𝑓(𝑦|𝑝, 𝑤, 𝑑). Here I show how beliefs evolve in response to consumption. It is natural to 

think that if a particular decision went badly, then the agent will want to avoid making the same 

mistake. He may realize that he underestimated the benefits of using more effort, and thus will 

revise his beliefs about 𝑓(𝑦|𝑝, 𝑤, 𝑑) accordingly. This can be modeled more formally. 

To update beliefs, the agent needs to gain some information from consumption. However, 

it must not be enough to allow him to recover the true preferences 𝑢(𝑥). If it were, then we are 

back to standard theory and cannot explain anomalies. This challenge can be met if the agent 

receives a noisy signal 𝑠 of the utility gap after consuming 𝑥(𝑝, 𝑤, 𝑑). 

 

(17) 𝑠 = 𝑦 + 𝜀 

 

Assume that 𝜀 is white noise and has known pdf 𝑓(𝜀). Since a boundedly rational agent can 

never achieve more utility than a perfectly rational one, 𝑦 is always nonnegative, so it makes 

sense to impose 𝑠 ≥ 0. If the signal were negative, then the individual would know that this was 

driven by the random shock 𝜀.  

Some notation is needed before proceeding. Let 𝜃 be an estimated vector of parameters 

that is updated in response to the signal. The dimensions of 𝜃 are 𝑛 × 1. The true 𝜃 is 𝜃∗. The 

agent initially believes that 𝑦, 𝑝, 𝑤, 𝑑, and 𝜃 have pdf 𝑓(𝑦, 𝑝, 𝑤, 𝑑, 𝜃). The optimal level of effort 

given beliefs is 𝑑̂. In other words, 

𝑑̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸[(𝑢(𝑥∗(𝑝, 𝑤)) − 𝑦(𝑝,𝑤, 𝑑) − 𝑣(𝑑)) |𝜃, 𝑝, 𝑤] ≡ 𝐷(𝜃, 𝑝, 𝑤). Equation (8) 

showed how to solve for 𝑑̂. Assume that 𝐷(𝜃, 𝑝, 𝑤) is continuously differentiable. The 

information set is 𝐼. Prices, wealth, and effort are all observed, and after consumption, the signal 

𝑠 is also observed. Hence, 𝑝, 𝑤, 𝑑, 𝑠, 𝑓(𝜀) 𝜖 𝐼. Lastly, the dimensions of 𝑝 are 𝐿 × 1. 

The initial beliefs are exogenous. The task is to update the beliefs optimally given the 

signal. This will help the agent in the next consumption problem he faces. 
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(18) max𝐸[𝑈(𝑥, 𝑑̂)|𝐼] 
                                       {𝜃} 
 

 

Recall that 𝑥∗(𝑝, 𝑤) is what a perfectly rational agent would choose. That is independent of our 

boundedly rational agent’s beliefs about effort, so 𝑥∗(𝑝, 𝑤) is not a function of 𝜃. The preference 

discovery cost 𝑣(𝑑) is known, so it can be pulled out of the expectation operator. Now the 

problem can be rewritten as 

 

(19) max𝐸[𝑢(𝑥∗(𝑝, 𝑤)) − 𝑦(𝑑̂)|𝐼] − 𝑣(𝑑̂). 
                                       {𝜃} 
 

 

(20) min𝐸[𝑦(𝑑̂)|𝐼] + 𝑣(𝑑̂) 
                                       {𝜃} 
 

 

From Bayes’ Rule, we know 

 

(21) 𝑓(𝑦|𝑠, 𝑝, 𝑤, 𝑑, 𝜃) =
𝑓(𝑠,𝑝,𝑤,𝑑,𝜃|𝑦) 𝑓(𝑦)

𝑓(𝑠,𝑝,𝑤,𝑑,𝜃)
. 

 

By definition, the cumulative distribution function is 

 

(22) 𝐹(𝑠, 𝑝, 𝑤, 𝑑, 𝜃|𝑦) = Pr[(𝑦 + 𝜀, 𝑃,𝑊, 𝐷, 𝛩) ≤ (𝑠, 𝑝, 𝑤, 𝑑, 𝜃)|𝑦] =

Pr[(𝜀, 𝑃,𝑊,𝐷, 𝛩) ≤ (𝑠 − 𝑦, 𝑝, 𝑤, 𝑑, 𝜃)|𝑦]. 

 

Since 𝜀 is white noise, 

(23) 𝑓(𝜀, 𝑝, 𝑤, 𝑑, 𝜃) = 𝑓(𝜀)𝑓(𝑝, 𝑤, 𝑑, 𝜃) = 𝑓(𝜀) ∫ 𝑓(𝑦, 𝑝, 𝑤, 𝑑, 𝜃) 𝑑𝑦
∞

0
. 

 

Therefore, 
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(24) 𝐹(𝑠, 𝑝, 𝑤, 𝑑, 𝜃|𝑦) =

∫ …∫ ∫ …
𝑝𝐿

0
∫ ∫ ∫ ∫ (∫ 𝑓(𝑌, 𝑃,𝑊,𝐷, 𝛩)𝑑𝑌

∞

0
)

𝑠−𝑦

−𝑦

𝑤

0

𝑑

0

𝑝1

0
𝑑𝐹(𝜀) 𝑑𝑊 𝑑𝐷 𝑑𝑃1…𝑑𝑃𝐿𝑑𝛩1…𝑑𝛩𝑛

𝜃1

−∞

𝜃𝑛

−∞
 

 

(25) 𝑓(𝑦|𝑠, 𝑝, 𝑤, 𝑑, 𝜃) =
𝜕𝐿+𝑛+3

𝜕𝑠𝜕𝑝𝜕𝑤𝜕𝑑𝜕𝜃
(𝑓(𝑦) ∫ …∫ ∫ …

𝑝𝐿
0 ∫ ∫ ∫ ∫ (∫ 𝑓(𝑌,𝑃,𝑊,𝐷,𝛩)𝑑𝑌

∞
0 )

𝑠−𝑦
−𝑦

𝑤
0

𝑑
0

𝑝1
0 𝑑𝐹(𝜀) 𝑑𝑊 𝑑𝐷 𝑑𝑃1…𝑑𝑃𝐿𝑑𝛩1…𝑑𝛩𝑛

𝜃1
−∞

𝜃𝑛
−∞ )

∫
𝜕𝐿+𝑛+3

𝜕𝑠𝜕𝑝𝜕𝑤𝜕𝑑𝜕𝜃
(∫ …∫ ∫ …

𝑝𝐿
0 ∫ ∫ ∫ ∫ (∫ 𝑓(𝑌,𝑃,𝑊,𝐷,𝛩)𝑑𝑌

∞
0 )

𝑠−𝑦
−𝑦

𝑤
0

𝑑
0

𝑝1
0 𝑑𝐹(𝜀) 𝑑𝑊 𝑑𝐷 𝑑𝑃1…𝑑𝑃𝐿 𝑑𝛩1…𝑑𝛩𝑛

𝜃1
−∞

𝜃𝑛
−∞ )

∞
0 𝑑𝐹(𝑦)

 

 

This can be substituted into 𝐸[𝑦(𝑑̂)|𝐼] = ∫ 𝑦 
∞

0
𝑓(𝑦|𝑠, 𝑝, 𝑤, 𝑑, 𝜃) 𝑑𝑦 ≡ ℎ(𝑑̂, 𝜃). Now the agent’s 

belief updating problem can be solved. 

 

(26) min𝐸[𝑦(𝑑̂)|𝐼] + 𝑣(𝑑̂) 
                                      {𝜃} 
 

 

Recall 𝑑̂ = 𝐷(𝜃, 𝑝, 𝑤). If 𝐷(𝜃, 𝑝, 𝑤) and ℎ(𝑑̂, 𝜃) are continuously differentiable, then the first 

order condition is  

 

(27) 
𝜕(𝐸[𝑦(𝑑̂)|𝐼]+𝑣(𝑑̂))

𝜕𝜃
= 𝑣′(𝑑̂)

𝜕𝑑̂

𝜕𝜃
+ ℎ1

𝜕𝑑̂

𝜕𝜃
+ ℎ2 = 0. 

 

As the number of signals (𝑁𝑠) approaches infinity, the effort level 𝐷(𝜃, 𝑝, 𝑤) will converge to 

𝐷(𝜃∗, 𝑝, 𝑤), i.e., the effort the agent would have chosen if the true 𝜃 were known. This result 

holds under very general conditions. The proof is in Appendix A. To clarify, this is not a claim 

that the agent’s consumption choices converge to full rationality. However, the model can 

accommodate learning, as demonstrated in the next section. 

 

Learning from Experience 

 

There is evidence of learning from experience, but as discussed in the introduction, this 

does not always suffice to eliminate intransitivities. How can this be modeled? In DeGroot 

(1983), agents start with prior beliefs about the parameters in their utility function. After 

consumption, they update their beliefs using Bayes rule. This works for certain functional forms 
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in DeGroot (1983); my model can be extended to explain learning from experience for more 

general utility functions. The utility function remains unknown to the agent. However, after 

gaining experience, the agent can make better choices with less effort than before. As in the 

previous section, the agent receives a noisy signal after each choice and 𝑁𝑠 is the number of 

signals. By “better choices,” I mean that the utility gap decreases; i.e., the agent’s utility from 

consumption gets closer to the utility of the perfectly rational agent. In other words, the expected 

value of 𝑦 is a decreasing function of 𝑁𝑠. 

 

(28) 
𝜕𝐸[𝑦|𝑝,𝑤,𝑑, 𝜃∗, 𝑁𝑠]

𝜕𝑁𝑠
< 0 

 

The literature on the multi-armed bandit problem can help us refine the learning from experience 

condition. In this literature, the usual story is about finding the optimal strategy for playing the 

slot machine at a casino. The slot machine has two or more arms. At each point in time, the agent 

pulls one of the arms. After each pull, the agent receives a payoff of zero or one. For each arm, 

the probability of receiving a payoff of one is unknown. Interest in this problem extends well 

beyond casino gamblers; Jun (2004) notes that it has been applied to “clinical trials, optimal 

experiments, new product development, job search, oil exploration, research & development, 

technology choice, and resource allocation.” 

 Suppose the agent is playing on a three-armed slot machine. To learn the probabilities, 

the agent might experiment by pulling the first two arms a couple of times. However, this 

experience does not provide any information about the third arm. Here is the insight for my 

model: experience is more helpful if it was obtained in a situation similar to the problem at hand. 

As before, the utility gap will shrink as the number of signals increases. This effect will be 

stronger if prices and wealth in the previous choices are similar to prices and wealth in the 

current scenario.  

 To distinguish between current and previous budgets, more notation is needed. Let 𝑤𝑘 be 

wealth in the k-th choice; 𝑊 is a vector of length 𝑁𝑠 containing 𝑤1, 𝑤2, … , 𝑤𝑁𝑠. Similarly, 𝑝𝑗
𝑖  is 

the price of good j in the i-th choice. All of the 𝑝𝑗
𝑖’s are in vector 𝑃. Without loss of generality, 

assume that 𝜃𝑖
∗ > 0 for all i. There are many ways to measure the similarity between two budget 

sets. Due to this, I will only give examples rather than a general result. 
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 In the simplest case, consider an agent who has made one choice already and is currently 

facing a second choice.  

(29) 𝐸[𝑦|𝑃,𝑊, 𝑑,  𝜃∗] =
𝜃1
∗

(𝜃2
∗+𝑑)

𝑚1𝑚2 

(30) 𝑚1 =
1

𝜃3
∗+𝜃4

∗ (𝜃3
∗ + 𝜃4

∗ −
𝜃4
∗

1+(
𝑤2

𝑝1
2−

𝑤1

𝑝1
1)

2) 

(31) 𝑚2 =
1

𝜃5
∗+𝜃6

∗(𝜃5
∗ + 𝜃6

∗ −
𝜃6
∗

1+(
𝑤2

𝑝2
2−

𝑤1

𝑝2
1)

2) 

 

When the two budget sets are more similar, 
𝑤2

𝑝1
2 −

𝑤1

𝑝1
1  and 

𝑤2

𝑝2
2 −

𝑤1

𝑝2
1  approach zero. This shrinks the 

𝑚1 and 𝑚2 terms. As a result, 𝐸[𝑦|𝑃,𝑊, 𝑑,  𝜃∗] falls. This means that when the budget sets are 

more similar, your expected utility gap decreases. You make better choices because your 

experience is more relevant; you approach full rationality.  

Equation (32) reveals another property.  

 

(32) 
𝜕𝐸[𝑦|𝑃,𝑊,𝑑, 𝜃∗]

𝜕𝑑
=

−𝜃1
∗

(𝜃2
∗+𝑑)2

 𝑚1 𝑚2 < 0 

 

This says that the expected utility gap decreases as you put in more effort. This makes sense, 

since we expect that applying more effort will bring you closer to full rationality. 

 The next set of equations form a more general example. In this case, the agent has made 

𝑁𝑠 choices already and is considering what to do in the next choice. 

 

(33) 𝐸[𝑦|𝑃,𝑊, 𝑑,  𝜃∗] =
𝜃1
∗

(𝜃2
∗+𝑑)

∏ ∏ 𝑚𝑙𝑏
𝐿
𝑙=1

𝑁𝑠
𝑏=1  

(34) 𝑚𝑙𝑏 =
1

𝜃̃𝑙𝑏
∗ +𝜃𝑙𝑏

∗

(

 𝜃̃𝑙𝑏
∗ + 𝜃𝑙𝑏

∗ −
𝜃𝑙𝑏
∗

1+(
𝑤𝑁𝑠+1

𝑝
𝑙
𝑁𝑠+1

−
𝑤𝑏

𝑝𝑙
𝑏)

2

)

  

 

When 𝐿 = 2 and 𝑁𝑠 = 1, it reduces to the earlier example. Note that 𝑚𝑙𝑏 is bounded between 
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𝜃̃𝑙𝑏
∗

𝜃̃𝑙𝑏
∗ +𝜃𝑙𝑏

∗ > 0 and one. Thus, for each additional choice, 𝐸[𝑦|𝑃,𝑊, 𝑑,  𝜃∗] is multiplied by a 

number between zero and one. In other words, the utility gap cannot increase when you gain 

more experience. Even if the new situation is entirely different from the previous ones you have 

faced (i.e., 𝑚𝑙𝑏 = 1), your experience does not harm you; it merely fails to help you. If the 

choices you have faced in the past are similar to the one you have now, then 𝑚𝑙𝑏 declines and the 

expected utility gap falls. Your experience causes you to approach to full rationality. 

 

4 Conclusion 

 

 Much of economic theory relies upon everyone being fully rational. However, 

experiments frequently claim to find violations of this assumption. If the claims are true, then the 

implications are quite troubling. For the bulk of microeconomic theory, it is not known if the 

results are robust to violations of transitivity. 

 However, the model in this paper supports the assumption of rationality. Apparent 

violations of revealed preference axioms might not be contradictions at all. Instead, people could 

be – very rationally – weighing the costs and benefits of effort and deciding to use less than 

100% of it. People can rationally dislike effort and find that the cost of working harder 

outweighs the risk of making a bad choice.  

 The model has many desirable properties. Optimization is retained throughout. Agents 

choose effort optimally given their beliefs and update their beliefs optimally. The recursion 

problem which has troubled many decision-cost models is resolved here. 

 In further research, it may be fruitful to investigate computational costs. Some errors in 

human decisions do not appear to be the result of preference discovery costs. For instance, in 

games of strategy, mistakes do not arise due to one player failing to discover that he had a 

preference for winning. Rather, the player wanted to win but did not manage to calculate the 

right strategy. The costs of calculation will most likely depend on the agent’s cognitive ability; 

these costs may be substantially different from the costs of discovering one’s preferences.  

 The rationality assumption remains defensible. All that is required is a very minimal 

addition – preference discovery costs – and the anomalies can be explained. 
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APPENDIX A 

 

CONVERGENCE OF EFFORT 

 

Let 𝑁𝑠 be the number of signals the agent receives. Only a few harmless assumptions are 

required to show convergence: as 𝑁𝑠 approaches infinity, 𝐷(𝜃, 𝑝, 𝑤) approaches 𝐷(𝜃∗, 𝑝, 𝑤).  

 

Assumption 1: 𝜃∗ is unique and dwells in a compact subset of 𝑅𝑛. 

Assumption 2: For all 𝑝,𝑤, 𝑑 ≥ 0, the agent’s initial beliefs 𝑓(𝑦, 𝑝, 𝑤, 𝑑, 𝜃) > 0 when 𝜃 = 𝜃∗. 

Assumption 3: There exists a valid instrumental variable for d that is in the agent’s information 

set. 

 

 Before going through the mathematical proof, some intuition is in order. An alternative 

way to update beliefs is by using nonlinear least squares with instrumental variables (NLLS-IV). 

We instrument for d because it is endogenous; the agent selects d optimally given his beliefs 𝜃. 

So if there is an instrument for d, the agent can obtain consistent estimates for 𝜃 using NLLS-IV. 

Thus, lim𝑁𝑠→∞ 𝜃𝑁𝐿𝐿𝑆_𝐼𝑉 = 𝜃
∗. This implies that lim𝑁𝑠→∞𝐷(𝜃𝑁𝐿𝐿𝑆_𝐼𝑉, 𝑝, 𝑤) = 𝐷(𝜃

∗, 𝑝, 𝑤). 

By definition of optimality, the optimal beliefs are no worse than any other beliefs. 

Therefore, if effort under the non-optimal beliefs 𝜃𝑁𝐿𝐿𝑆_𝐼𝑉 converge, then effort under the 

optimal beliefs will also converge. Now for the math. 

Let 𝜃 denote the optimal beliefs. The beliefs under NLLS-IV are 𝜃𝑁𝐿. The information 

set 𝐼 augmented with 𝑁𝑠 signals is 𝐼𝑁𝑠. Since 𝜃∗ is the true 𝜃, if you knew 𝜃∗, then other beliefs 𝜃 

would be irrelevant for assessing the expected value of the utility gap. Hence, 

∫ 𝑦 𝑓(𝑦|𝑝, 𝑤, 𝑑,
∞

0
𝜃∗, 𝜃𝑁𝐿 , 𝜃, 𝐼𝑁𝑠) 𝑑𝑦 = ∫ 𝑦 𝑓(𝑦|𝑝, 𝑤, 𝑑,

∞

0
𝜃∗) 𝑑𝑦. First, consider the problem 

faced by an agent who knows 𝜃∗. 

 

(35) max𝐸[𝑢(𝑥(𝑝, 𝑤, 𝑑))|𝑝, 𝑤, 𝑑, 𝜃∗, 𝜃𝑁𝐿 , 𝜃, 𝐼𝑁𝑠] − 𝑣(𝑑) 
                     {𝑑} 

 

This is equivalent to the following. 

 

(36) min𝐸[𝑦(𝑝, 𝑤, 𝑑)|𝑝, 𝑤, 𝑑, 𝜃∗, 𝜃𝑁𝐿 , 𝜃, 𝐼𝑁𝑠] + 𝑣(𝑑) 
                     {𝑑} 
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Maximizing utility is equivalent to minimizing the utility gap plus the disutility of effort. The 

problem above is the same as 

 

(37) min𝐸[𝑦(𝑝, 𝑤, 𝑑)|𝑝, 𝑤, 𝑑, 𝜃∗] + 𝑣(𝑑). 
                     {𝑑} 

 

The solution is 𝑑 = 𝐷(𝜃∗, 𝑝, 𝑤). Since 𝐷(𝜃∗, 𝑝, 𝑤) is optimal given 𝑝,𝑤, and 𝜃∗, we know that 

for any 𝜃0, 

 

(38) 𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃∗, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝜃∗] + 𝑣(𝐷(𝜃∗, 𝑝, 𝑤)) ≤

𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃0, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝜃
∗] + 𝑣(𝐷(𝜃0, 𝑝, 𝑤)). 

 

One such 𝜃0 is 𝜃𝑁𝐿. Since the NLLS-IV estimator is consistent, lim𝑁𝑠→∞ 𝜃𝑁𝐿 = 𝜃
∗. Thus, 

lim𝑁𝑠→∞𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤) = 𝐷(𝜃
∗, 𝑝, 𝑤) and lim

𝑁𝑠→∞
𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] +

𝑣(𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤)) = 𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃
∗, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝜃∗] + 𝑣(𝐷(𝜃∗, 𝑝, 𝑤)). Another possible 𝜃0 is 

the optimal beliefs 𝜃. Therefore, we know 

 

(39) lim
𝑁𝑠→∞

𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤)) ≤

lim
𝑁𝑠→∞

𝐸[𝑦(𝑝,𝑤, 𝐷(𝜃, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃, 𝑝, 𝑤)). 

 

However, because 𝜃 is the optimal beliefs, we know that for all 𝑁𝑠, 

 

(40) 𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤)) ≥

𝐸[𝑦(𝑝,𝑤, 𝐷(𝜃, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃, 𝑝, 𝑤)). 

 

Together, the two equations above imply  

 

(41) lim
𝑁𝑠→∞

𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤)) =
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lim
𝑁𝑠→∞

𝐸[𝑦(𝑝,𝑤, 𝐷(𝜃, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃, 𝑝, 𝑤)). 

 

Since lim
𝑁𝑠→∞

𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃𝑁𝐿 , 𝑝, 𝑤)) =

𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃∗, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝜃∗] + 𝑣(𝐷(𝜃∗, 𝑝, 𝑤)), 

 

(42) lim
𝑁𝑠→∞

𝐸[𝑦(𝑝,𝑤, 𝐷(𝜃, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝐼𝑁𝑠] + 𝑣(𝐷(𝜃, 𝑝, 𝑤)) =

lim
𝑁𝑠→∞

𝐸[𝑦(𝑝,𝑤, 𝐷(𝜃, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝜃∗] + 𝑣(𝐷(𝜃, 𝑝, 𝑤)) =

𝐸[𝑦(𝑝, 𝑤, 𝐷(𝜃∗, 𝑝, 𝑤))|𝑝, 𝑤, 𝑑, 𝜃∗] + 𝑣(𝐷(𝜃∗, 𝑝, 𝑤)). 

 

Therefore, lim
𝑁𝑠→∞

𝐷(𝜃, 𝑝, 𝑤)  𝜖 𝐷(𝜃∗, 𝑝, 𝑤). Note that there is no requirement that 𝐷(𝜃∗, 𝑝, 𝑤) has 

to be a function; more generally, it can be a nonempty-valued correspondence. 
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